NPA List


Aliri brings more than 30 years of experience in bioanalytical services, developing robust methods to support all stages of drug discovery and development.  We offer an extensive list of validated, off-the-shelf assays you can leverage to support a range of research applications.  In addition to the hundreds of assays listed below, Aliri also excels at developing customized methods to meet your specific challenges.

Download Now

The Importance of Sample Clean up Demonstrated by the Revalidation of the Biomarker 4β-hydroxycholesterol for Assay Robustness


Uncover the advancements reshaping biomarker analysis with our refined method for quantifying 4β-hydroxycholesterol (4β-OHC) – a vital biomarker for CYP3A activity. With our improved assay methodology, we offer a reliable solution for quantifying 4β-OHC, empowering researchers and clinicians with accurate biomarker data for informed treatment decisions.

Download our poster to unlock the potential of this innovative approach.

Download Now

Validation of an LCMS Hybrid Assay with EVOSEP cleanup for the quantitation of Islet Amyloid polypeptide in human plasma


Delve into the forefront of biomarker analysis with our validated LCMS Hybrid Assay, offering precise quantitation of Islet Amyloid Polypeptide (IAPP) in human plasma. Our method revolutionizes detection by coupling immunoprecipitation from plasma with EVOSEP solid phase extraction and microflow chromatography, resulting in detection limits comparable to traditional methods. By leveraging a high-binding, non-specific antibody for IAPP, our assay surpasses commercially available kits, ensuring comprehensive analysis of different IAPP forms.

Download our poster to discover the innovation behind our approach and its potential uses in regulated settings and biologics advancement.

Download Now

Tissue Adenosine Distribution-Guided Gene Selection for the Development of a Composite Biomarker in Immuno-Oncology Therapy


Discover the groundbreaking approach revolutionizing Immuno-Oncology (IO) therapy through tissue adenosine distribution-guided gene selection for composite biomarker development. Our method transcends traditional predictive biomarkers by integrating spatial metabolomics and genomics, offering a comprehensive strategy to predict patient responses to IO therapies.

Download our poster to explore the transformative potential of adenosine-driven gene signatures in personalized cancer treatment strategies.

Download Now

Multimodal stratification of predictive biomarkers in head and neck cancers: A focus on cytokine-based immunotherapy


Explore our recent poster presentation, which discusses the challenge of identifying predictive biomarkers for cytokine-based immunotherapy in head and neck cancers due to the complexity of biological systems and cancer pathophysiology. It highlights the importance of understanding how drugs interact with different biomarkers and tissues spatially to improve trial success rates, reduce costs, and accelerate completion times.

By analyzing spatial and temporal changes in tumor cells and their microenvironment, you can uncover resistance mechanisms, leading to the design of more effective combination therapies. The Aliri solution offers enhanced tumor profiling through spatial analysis, integration of heterogenous data types, and predictive analysis, ultimately identify robust biomarker signatures for improved immunotherapy outcomes.

Download our poster to gain insights into the unique biomarker signatures correlated with therapy response.

Download Now

Keeping an eye on molecular imaging: drug efficacy & toxicity in ophthalmology


Discover how Mass Spectrometry Imaging (MSI) is revolutionizing preclinical studies by offering quick and accurate assessments of ocular treatments’ efficacy and safety.

With MSI, track the bio-distribution of drugs and metabolites while pinpointing biomarkers for efficacy or toxicity. Gain valuable insights into ocular drug distribution and biomarker modulation with Aliri’s advanced MSI technology.

Download our application note to dive deeper into our MSI technology and its applications in ocular diseases.

Download Now

Coproporphyrin-I and Coproporphyrin-III


Aliri Bioanalysis presents a newly validated non-proprietary biomarker assay (NPA) for the quantitation of Coproporphyrin I and Coproporphyrin III in human plasma. This assay offers significant advancements in biomarker analysis, applicable across diagnostics, pharmaceutical research, and patient care.

By monitoring these biomarkers, particularly in early clinical development, companies can assess OATP1B1 inhibition, potentially avoiding the need for dedicated clinical drug-drug interaction studies, saving both time and money.

Learn more about the benefits of our NPA for Coproporphyrin I and Coproporphyrin III.

Download Now

Mercapturate pathway metabolites of sotorasib, a covalent inhibitor of KRAS G12C , are associated with renal toxicity in the Sprague Dawley rat


Sotorasib is a first-in class KRAS G12C covalent inhibitor in clinical development for the treatment of tumors with
the KRAS p.G12C mutation. In the nonclinical toxicology studies of sotorasib, the kidney was identified as a
target organ of toxicity in the rat but not the dog. Renal toxicity was characterized by degeneration and necrosis
of the proximal tubular epithelium localized to the outer stripe of the outer medulla (OSOM), which suggested
that renal metabolism was involved. Here, we describe an in vivo mechanistic rat study designed to investigate
the time course of the renal toxicity and sotorasib metabolites. Renal toxicity was dose- and time-dependent,
restricted to the OSOM, and the morphologic features progressed from vacuolation and necrosis to regeneration
of tubular epithelium. The renal toxicity correlated with increases in renal biomarkers of tubular injury.
Using mass spectrometry and matrix-assisted laser desorption/ionization, a strong temporal and spatial associ –
ation between renal toxicity and mercapturate pathway metabolites was observed. The rat is reported to be
particularly susceptible to the formation of nephrotoxic metabolites via this pathway. Taken together, the data
presented here and the literature support the hypothesis that sotorasib-related renal toxicity is mediated by a
toxic metabolite derived from the mercapturate and B-lyase pathway. Our understanding of the etiology of the rat
specific renal toxicity informs the translational risk assessment for patients.

Download Now

A New Safety Concern for Glaucoma Treatment Demonstrated by Mass Spectrometry Imaging of Benzalkonium Chloride Distribution in the Eye, an Experimental Study in Rabbits


We investigated in a rabbit model, the eye distribution of topically instilled benzalkonium (BAK) chloride a commonly used preservative in eye drops using mass spectrometry imaging. Three groups of three New Zealand rabbits each were used: a control one without instillation, one receiving 0.01%BAK twice a day for 5 months and one with 0.2%BAK one drop a day for 1 month. After sacrifice, eyes were embedded and frozen in tragacanth gum. Serial cryosections were alternately deposited on glass slides for histological (hematoxylin-eosin staining) and immunohistological controls (CD45, RLA-DR and vimentin
for inflammatory cell infiltration as well as vimentin for Mu¨ller glial cell activation) and ITO or stainless steel plates for MSI experiments using Matrix-assisted laser desorption ionization time-of-flight. The MSI results were confirmed by a roundrobin study on several adjacent sections conducted in two different laboratories using different sample preparation methods, mass spectrometers and data analysis softwares. BAK was shown to penetrate healthy eyes even after a short
duration and was not only detected on the ocular surface structures, but also in deeper tissues, especially in sensitive areas involved in glaucoma pathophysiology, such as the trabecular meshwork and the optic nerve areas, as confirmed by images with histological stainings. CD45-, RLA-DR- and vimentin-positive cells increased in treated eyes. Vimentin was found only in the inner layer of retina in normal eyes and increased in all retinal layers in treated eyes, confirming an activation response to a cell stress. This ocular toxicological study confirms the presence of BAK preservative in ocular surface structures as well
as in deeper structures involved in glaucoma disease. The inflammatory cell infiltration and Mu¨ller glial cell activation confirmed the deleterious effect of BAK. Although these results were obtained in animals, they highlight the importance of the safety-first principle for the treatment of glaucoma patients.

Download Now

On-demand webinar: Importing and exporting biological samples

Importing and exporting biological samples to and from a US bioanalytical lab requires the US government’s oversight to prevent the transportation of exotic diseases and the supplying of illegal markets. Pharma companies and bioanalytical partners must proactively work together to secure the correct import or export licenses or permits prior to shipment to ensure international samples arrive intact and on time. In this webcast, learn more about how the process is navigated to help you successfully plan your study’s timeline and avoid compromising your samples in transit.

Watch on-demand now