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Indication ROIs

Adenosine 

quantification obtained 

by MSI* (µM)

Bladder

High-1 162,3

High-2 159,9

High-3 148,0

High-4 139,8

Low-1 69,8

Low-2 77,3

Low-3 50,6

Low-4 50,0

Indication Histological Structure 
Adenosine quantification obtained by 

qMSI* (µM)

Bladder 

cancer

Entire tissue 70,9

invading tumor cells 48,6

Healthy tissue 71,7
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Tissue Adenosine Distribution-Guided Gene Selection for the 

Development of a Composite Biomarker in Immuno-Oncology Therapy 
Corinne Ramos Ph.D., Sandra Delebecq MS, 

Raphael Legouffe MS, Mathieu Gaudin Ph.D.

Adenosine Distribution Introduction ROIs Informed Transcriptomics Analysis Gene Expression Profile 

The burgeoning field of Immuno-Oncology (IO) has revolutionized cancer 

treatment by harnessing the body's immune system to fight cancer. Despite the 

remarkable successes of IO therapies, including checkpoint inhibitors and CAR-T 

cell therapies, a significant proportion of patients do not respond to these 

treatments, underscoring the critical need for predictive biomarkers. Biomarkers 

that can accurately predict patient response to IO therapy are essential for 

optimizing treatment strategies, minimizing unnecessary exposure to potentially 

ineffective treatments, and enhancing patient outcomes.

We set out to introduce a novel approach that transcends traditional methods of 

predicting patient responses. Recognizing the limitations inherent in relying solely 

on genetic or proteomic biomarkers, our strategy integrates the spatial distribution 

of adenosine within the tumor microenvironment (TME) with comprehensive 

spatial genomic profiling. This innovative methodology aims not only to identify 

patients who are most likely to benefit from IO therapies but also to unveil the 

complex interplay between tumor metabolism and the immune system's capacity 

to combat cancer.

Our methodological approach employs a synergistic integration of Mass 

Spectrometry Imaging (MSI) and Spatial Transcriptomics to unravel the complex 

landscape of the tumor microenvironment (TME), focusing on the distribution of 

adenosine and its relationship with gene expression patterns (Figure 1). 

Method

Standardized and validated MSI protocol for Adenosine was applied to the tumor 

sections. Based on the quantitative adenosine maps, tissue regions were selected 

for subsequent gene expression analysis. This selection was guided by the 

hypothesis that areas with high adenosine concentration are associated with 

immune suppression and evasion mechanisms, while low adenosine areas may 

represent different immunological states.

Figure 1 Workflow integrating metabolites analysis and transcriptome assessment; GeoMx: Digital 

Spatial Transcriptomic Profiler. 

MSI data were acquired and analysed with FlexImaging (Bruker Daltonics), Data 

Analysis software (Bruker Daltonics) and proprietary software MultimagingTM 

(Aliri France SAS v1.2.6.1). Figure 2 accentuates the adenosine distribution in 

different human tumor samples, with the molecular signal's intensity scales in 

each image finely adjusted. This ensures a clear distinction between noise and 

genuine molecular signals and enhances the overall clarity of the signal's 

depiction across the sections.

Based on the MSI data set on the tissue sections and the dilution series, the 

quantitation of the test items was performed with the internal standard approach. 

MultimagingTM software was used to normalize the signal of the test item in the 

spectra by the signal of the internal standard (stable isotopic labeled compound 

sprayed onto the tissue sections in the MALDI matrices). A correlation between 

the calibration curve and the signal obtained on the tissues was then performed to 

determine the concentration of the test items per histological structure in µM 

(Table 1).

Table 1 Adenosine quantification in tissue samples

Figure 2 Quantitative mapping of adenosine distribution in tumor tissues, showing the levels of 

adenosine in various regions of the tumor and the tumor microenvironment (TME).

Utilizing the data from the quantitative maps, specific tissue regions of interest 

(ROIs) have been chosen for further gene expression analysis. The selection 

process is informed by the theory that regions exhibiting high concentrations of 

adenosine are linked to mechanisms of immune suppression and evasion, 

whereas regions with lower levels of adenosine could indicate varied immune 

states.

Comparative whole transcriptome analyses were conducted between areas with 

high and low adenosine (ADO) concentrations. Principal Component Analysis 

(PCA) and clustering were applied to each condition separately, emphasizing the 

gene expression divergence or similarity between the high and low ADO regions 

of interest (ROIs). PCA plots reveal a distinct segregation between regions of high 

and low adenosine (ADO) concentration in ovarian cancer samples.

Figure 3 Selection of ROIs Based on Adenosine Levels for Transcriptome Analysis.

Figure 4 PCA and Heat map representing the unsupervised clusterization of the samples into the 

two phenotypes ADO high and ADO low. 

Integrating adenosine concentration data with gene expression profiles, we 

performed a correlation analysis to identify adenosine-driven gene signatures. 

This analysis pinpointed a set of genes whose expression levels were significantly 

correlated with adenosine concentrations, particularly those involved in T-cell 

exhaustion and metabolic adaptation. A LMM (Linear Mixed Models) statistical 

test, accompanied by a Benjamin-Hochberg (BH) correction, was successfully 

conducted to identify statistical differences in individual targets between the two 

phenotypes: ADO high and ADO low. 

Figure 5 A. Volcano plot representing the gene expression modulation between the two phenotypes 

ADO high and ADO low. B. Pie plot of cell type proportion in the TME of each tested patient. 

Our results illustrate the profound impact of adenosine concentration on the 

immune landscape of TME and underscore the utility of integrating metabolic and 

transcriptomic data to identify predictive biomarkers for IO therapy. The identified 

adenosine-driven gene signatures offer a novel avenue for patient stratification 

and highlight potential targets for therapeutic intervention, paving the way for 

more personalized and effective cancer treatment strategies. 

Conclusions

A: Adipose tissue

H: Healthy tissue

N: Necrotic tissue 

S: Stroma

T: Tumor

T*: Invading tumor cells

T**: gland tumor (necrosis in gland)
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