

OPTIMIZING SMALL MOLECULE DRUG DEVELOPMENT STRATEGIES:

A step by step approach to a rugged method

Developing a rugged method for optimizing small molecule drug development strategies is pivotal in the journey toward effective therapies. A methodic approach not only ensures consistency and reliability in data, but also empowers you to make informed decisions, enhancing efficiency and success of your project. We've outlined a robust approach below, including 7 crucial steps, to help you navigate the complexities and uncertainties that come with advancing small molecules for drug development.

STEP 1 MS tuning	 Optimize sensitivity for at least two separate MRM transitions per analyte/internal standard Conduct MS tuning using: Acidic and basic pH values Two different organic solvent modifiers Positive and negative ionization modes ESI and APCI sources
STEP 2 HPLC separation	 Explore characteristics as a function of: Mobile phase acidity/basicity Function of organic modifier Determine chromatographic "mode" behavior Separate compounds of interest from endogenous matrix effectors (phospholipids)
STEP 3 Sample preparation	 Protein precipitation (Dirty but fast) Support liquid exchange of liquid/liquid extraction (Clean and fast) Complete solid phase extraction (Highly specific)

STEP 4 Stability	Assess stability in both the sample matrix and stock/spiking solution diluent
	Assess stability in the sample matrix
	Benchtop and Freeze Thaw
	Exposure to light
	Oxidation
	Assess stability in solution diluent
	Start early
	Don't confuse stability with adsorption
	Don't confuse stability with solubility
	If matrix treatment is required use the following guide
	Make sure the treatment volumes for the samples lend to accurate pipetting
	If treating preclinical samples you should try to establish a treatment procedure that could be used
	in clinical trials
STEP 5 Matrix effects	Consider species sample volume when deciding on preparation scheme
	 Mouse and Rat will most likely have limited volume and may require separate individuals for both the high and low concentration tests
	Test Hemolysis with more than one lot of hemolyzed plasma
	Test Hyperlipidemia with more than one lot of matrix
	If matrix effects fail due to precision it may be due to matrix effects issues
	If matrix effects fail due to accuracy it may be due to preparation issues
	Establish robustness by handing off validation to another scientist
STEP 6 Moving from method	Map out the planned analytical experiments
	Establish solution stability as soon as possible
development into	Keep method development engaged while validating the assay
method validation	QC in real time
	 Have an established guide to determine next steps if a test fails to meet the acceptance criteria
STEP 7 Moving from method validation into sample analysis	Conduct a method validation to sample analysis meeting to review the following:
	Accuracy and precision data
	Update the method to include established stability
	 Update method using the validation scientist as a guide to adjust any of the wording for the sample extraction method
	Determine reasonable batch size for sample analysis
	 If you are treating samples for stability the sample concentrations for the study should reflect the untreated concentrations
	 Keep the method validation and method development scientist engaged through early sample analysis
	Conduct ISR as early as possible even if there is a small number of qualifying samples
	 Neither method development or method validation are complete until ISR meets the acceptance criteria

COMMON TROUBLE SHOOTING

- You cannot determine accuracy until you have precision
- If you have poor precision, you must first determine if it is extraction related or instrument related
- If precision is failing due to the extraction you should extract some blanks and post spoke and analyte to determine if it is related to recovery
- If accuracy is failing, you should ensure the preparation scheme for both the analytical curve and QCs are similar in design
 - To ensure it is not a stock solution issue, you can always prepare test QCs from the spiking curve vs using the QC spiking solution, if the "curve" QVs pass but the actual QVs fail reprepare the solutions for both curve and QCs
- If sensitivity is dropping during the course of the run but returns back to normal with a different column you should consider the addition of a forward or backward flush to re-equilibrate the column from injection to injection

Contact us to learn more about our small molecule drug development workflows.